
Immediate Mode Graphical User Interface
(IMGUI)

Why do we need a new way of
making GUIs?
● Common sentiment - “GUIs are hard”
● Win32 / MFC is powerful, but is not trivial to

use:
– Widget layout tools
– Decentralized linkages
– Callbacks
– IDs

MFC for tools
● Massive Entertainment used MFC for

tools/editors:
– Ground Control mission editor (GenEd)
– Drömjobbet data editor (JuiceMaker)
– Ground Control II mission editor (XED)
– In each case dedicated programmer with large in-

vestment in MFC skillz...
● Motivation:

– “Guis are hard!”
– We need complex widgets, i.e. tree controls
– We feel serious when we use MFC :)

Proprietary Game GUI systems at
Massive Entertainment

● Required hardware accelerated GUI (DirectX)
that worked well with real time rendering

● Ground Control had 2 UI systems
– IGComponent system for in-game

● Code driven
– Management system for front-end

● Code and data driven
● Drömjobbet i Rosemond Valley

– Entirely new system (nothing reused from GC)
● Used semi-standard data description language (Juice)
● Better tools for editing layout (JuiceMaker)
● Code and data driven

Proprietary Game UI systems at
Massive Entertainment

● Ground Control II, yet another system!
– MGui (Massive Gui)

● Part of company framework (MFramework)
● Re-used Juice/JuiceMaker as design tool
● Code and data driven

● All systems were:
– More or less based on MFC design
– Big - lots of classes
– Complex - required dedicated coders
– Fragile – we never really felt we got it right

Proprietary Game UI systems at
Massive Entertainment

● World In Conflict
– New tools
– Code extension of GCII system

● Future projects
– Yet another system!

Proprietary Game UI systems at
MindArk
● System written ca 1999

– Mix av software (including asm) and hardware ac-
celeration

● No coder fully understood it
– Extremely large system, many layers, very decentral-

ized
● No coder dared to replace it

– Several incomplete replacement attempts
– Entropia Universe has at least 3 styles of GUI at

once
● No senior coder wanted to maintain it

– Delegate maintenance tasks to new programmers!

Why so much trouble?

“Guis are hard!”

Someone finally questioned this!

● Casey Muratori (www.mollyrocket.com) stum-
bled upon / “invented” IMGUI while working at
Rad Game Tools
– hObbE at www.spellofplay.com showed me this
– The original IMGUI presentation .avi changed my

life!
● http://www.mollyrocket.com/video/imgui.avi
● Sadly this link is broken, but I have a copy!

http://www.mollyrocket.com/
http://www.spellofplay.com/
http://www.mollyrocket.com/video/imgui.avi

Why so much trouble?

“Guis are hard!”

or perhaps...

“Guis are in Retained Mode!”

Retained Mode GUIs (RMGUI), i.e. MFC
● Application steps

– Init
● Create widgets using framework classes

– CButton, CList, CCombo, CEdit, CTreeCtrl
● Resource editors / code generators
● Subclass framework classes for application specific win-

dows, dialogs and menus
– Update

● ???
● Framework “does stuff”, calls back / messages your app

– Callbacks / Messages
● i.e. OnButtonClicked(ID, stuff...)
● Delete / create / enable / disable widgets dynamically
● Move state back and forth between framework objects

(widgets) and your app
● Widget ID linkage is central!

Immediate Mode GUIs (IMGUI)
● Application steps

– Update

if(doButton()) //returns true on click
{

//do something
}

//only draw button/do interaction if appValue == true
if(appValue == true && doButton())
{

//do something else
}

Immediate Mode GUIs (IMGUI)
● “Framework” implementation

– Button “widget”

bool doButton(const Rect& aLayout, const char* aText)
{

drawRect(aLayout, BUTTON_COLOR);
drawText(aLayout, aText);

return mouseCursorInside(aLayout) && mouseButtonClicked();
}

Immediate Mode GUIs (IMGUI)
● Application code (i.e. Controller)

– Radio Button “widget”
Rect layout;
int i;

layout.width = 40;
layout.height = 10;
layout.x = 0;
layout.y = 0;

for(i = 0; i < NUM_ITEMS; i++)
{

if(doRadio(myItem == i, layout, ITEM_NAMES[i])
{

myItem = i;
}

layout.x += layout.width;
}

Immediate Mode GUIs (IMGUI)
● “Framework” implementation

– Radio Button “widget”

bool doRadio(const bool anActiveFlag,
const Rect& aLayout,
const char* aText)

{
drawRect(aLayout,

anActiveFlag ? ACTIVE_RADIO_COLOR : INACTIVE_RADIO_COLOR);
drawText(aLayout, aText);

return mouseCursorInside(aLayout) && mouseButtonClicked();
}

Rethink some widgets (IMGUI)
● List controls not needed

– Just loop app items and doRadio() / doButton() /
doText() for each item

for(i = 0; i < NUM_ITEMS; i++)
{

//selection is visible due to use of radio button “widgets”
if(doRadio(mySelection == i, x, y, ITEM_NAMES[c]))
{

mySelection = i;
}

}

Rethink some widgets (IMGUI)
● Tree controls (application)

– Can be reduced to a TreeNode widget that can be
expanded and collapsed

– Requires a “handle” from the application
for(c = 0; c < NUM_CATEGORIES; c++)
{

//returns true if node is expanded
//application passes a const void* to identify the node
//across frames (first param, can be anything unique)
//actual expand/collapse state is stored inside the gui
//in a map (const void* <-> bool)
if(doTreeNode(CATEGORY_NAMES[c], x, y, CATEGORY_NAMES[c]))
{

//do gui for expanded node
}

}

Rethink some widgets (IMGUI)
● Tree controls (framework)
bool doTreeNode(const void* aHandle,

const int aX, const int aY,
const WCHAR* aLabel)

{
//hardcoded limit to number of const void* <-> bool mappings
if(myNumHandles < MAX_HANDLES)
{

bool& h(handleState(aHandle));
String s;

s.format(h ? "-%s" : "+%s", aLabel);

if(doRadio(h, aX, aY, s))
h = !h;

return h;
}

return false;
}

Rethink some widgets (IMGUI)
● Combo boxes (application)

– Similar to TreeNode (uses same handle concept)
– Framework handles expand / collapse gui
– Framework can turn off all other widget interaction

while combo is expanded (to handle overlap)
static const char* COMBO_CHOICES[] =
{

"orange",
"pink",
"red",
"blue",
NULL,

};

doCombo(myChoice, x, y, COMBO_CHOICES);

Rethink some widgets (IMGUI)
● Combo boxes (framework)
void doCombo(unsigned int& aChoice, const int aX, const int aY, const char** someChoices)
{

if(myNumHandles < MAX_HANDLES)
{

bool& h(handleState(&aChoice));
//expanded
if(h)
{

//current choice
if(doButton(aX, aY, someChoices[aChoice]))

h = false; //same choice
//list
unsigned int c(0);
int y(aY);
while(someChoices[c]) //terminate on NULL
{

if(doRadio(c == aChoice, aX, y += buttonHeight(), someChoices[c]))
{

aChoice = c;
h = false;

}
c++;

}
}
//collapsed
else
{

if(doRadio(h, aX, aY, someChoices[aChoice]))
h = true;

}
}

}

Other advanced widgets in IMGUI
● Edit boxes
● Sliders
● Drag-n-drop
● Color pickers
● Multiple windows / focus control

● All of the above are possible!
– Examples: http://www.johno.se/software/IMGUI.zip

http://www.johno.se/software/IMGUI.zip

Implementation tips
● Do key/mouse interaction at time of “widget”

call
– i.e. Controller::doInput()

● Postpone / cache rendering until time to draw
– i.e. Controller::doOutput()
– This helps when sorting / batching primitives in i.e.

DirectX
– Also useful when supporting multiple overlapping

windows / focus control

Implementation tricks
//code from johno's DirectX9 IMGUI
const int Gui::button(const Style& aStyle,

const int aX, const int aY,
const int aWidth, const bool anEdgesFlag,
const WCHAR* aText,
Font& aFont, const int aKey)

{
//add to batches
addRect(aStyle, aX, aY, aWidth, anEdgesFlag);
if(aText)
{

aFont.addText(aX + BUTTON_TEXT_OFFSET, aY - 1, aText, false,
aStyle.myFont);

}

//sample input state directly
return buttonClicked(aX, aY, aWidth, buttonHeight(), aKey);

}

void Gui::draw(IDirect3DDevice9& aDevice)
{

//draw calls all clear batches after drawing
myRects.draw(aDevice);
myFont.draw(*mySprite);
myBoldFont.draw(*mySprite);
myMouseInsideFlag = false;

}

RMGUI traits
● RMGUIs tend to cache lots of application state

internally
– Sync requirements lead to lots of tedious code that

“doesn't do anything valuable”
● Systems become decentralized

– Define gui widgets here...
– Handle callbacks over there...
– Need centralized IDs in yet another place...

● Systems become data-driven
● The capabilities of procedural logic are lost

– Code is more powerful than pure data / code is a su-
perset of data

IMGUI traits
● IMGUIs cache little / no application state
● No sync of data
● Centralized flow control

– Single code path controls all gui
● Code flow controls what is on the screen (procedural), as

opposed to init-time pre-defined setup (data driven)
● “Widgets” are procedural style function calls

– “Don't call the method, don't have a widget!”
● Enables very dynamic guis
● Dynamic widget creation / destruction / enable / disable is

not an issue in IMGUI
● Geared towards real-time rendering, i.e. games

Re-evaluate “classic” widgets?
● Because IMGUI is so dynamic, maybe we don't

need all those classic widgets and windows...

– I personally don't like:
● Overlapping (i.e windows, drop-down menus)

– would rather have “dedicated screen space”
● Free scroll bars

– implications of clipping widgets / viewports
– would rather have “snapped pages”

● Questioning these “standards” is risky due to
customer expectations

● Games are in a better position to experiment
than traditional apps

Links
● https://mollyrocket.com/forums/viewforum.php?f=10

● http://sol.gfxile.net/files/Assembly07_IMGUI.pdf

● http://www.johno.se/software/IMGUI.zip

https://mollyrocket.com/forums/viewforum.php?f=10
http://sol.gfxile.net/files/Assembly07_IMGUI.pdf
http://www.johno.se/software/IMGUI.zip

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

