
Immediate Mode Graphical User Interface
(IMGUI)



Why do we need a new way of 
making GUIs?
● Common sentiment - “GUIs are hard”
● Win32 / MFC is powerful, but is not trivial to 

use:
– Widget layout tools
– Decentralized linkages
– Callbacks
– IDs



MFC for tools
● Massive Entertainment used MFC for 

tools/editors:
– Ground Control mission editor (GenEd) 
– Drömjobbet data editor (JuiceMaker)
– Ground Control II mission editor (XED)
– In each case dedicated programmer with large in-

vestment in MFC skillz...
● Motivation:

– “Guis are hard!”
– We need complex widgets, i.e. tree controls
– We feel serious when we use MFC :)



Proprietary Game GUI systems at 
Massive Entertainment

● Required hardware accelerated GUI (DirectX) 
that worked well with real time rendering

● Ground Control had 2 UI systems
– IGComponent system for in-game

● Code driven
– Management system for front-end

● Code and data driven
● Drömjobbet i Rosemond Valley

– Entirely new system (nothing reused from GC)
● Used semi-standard data description language (Juice)
● Better tools for editing layout (JuiceMaker)
● Code and data driven



Proprietary Game UI systems at 
Massive Entertainment

● Ground Control II, yet another system!
– MGui (Massive Gui)

● Part of company framework (MFramework)
● Re-used Juice/JuiceMaker as design tool
● Code and data driven

● All systems were:
– More or less based on MFC design
– Big - lots of classes
– Complex - required dedicated coders
– Fragile – we never really felt we got it right



Proprietary Game UI systems at 
Massive Entertainment

● World In Conflict
– New tools
– Code extension of GCII system

● Future projects
– Yet another system!



Proprietary Game UI systems at 
MindArk
● System written ca 1999

– Mix av software (including asm) and hardware ac-
celeration

● No coder fully understood it
– Extremely large system, many layers, very decentral-

ized
● No coder dared to replace it

– Several incomplete replacement attempts
– Entropia Universe has at least 3 styles of GUI at 

once
● No senior coder wanted to maintain it

– Delegate maintenance tasks to new programmers!



Why so much trouble?

“Guis are hard!”



Someone finally questioned this!

● Casey Muratori (www.mollyrocket.com) stum-
bled upon / “invented” IMGUI while working at 
Rad Game Tools
– hObbE at www.spellofplay.com showed me this
– The original IMGUI presentation .avi changed my 

life!
● http://www.mollyrocket.com/video/imgui.avi
● Sadly this link is broken, but I have a copy!

http://www.mollyrocket.com/
http://www.spellofplay.com/
http://www.mollyrocket.com/video/imgui.avi


Why so much trouble?

“Guis are hard!”

or perhaps...

“Guis are in Retained Mode!”



Retained Mode GUIs (RMGUI), i.e. MFC
● Application steps

– Init
● Create widgets using framework classes

– CButton, CList, CCombo, CEdit, CTreeCtrl
● Resource editors / code generators
● Subclass framework classes for application specific win-

dows, dialogs and menus
– Update

● ???
● Framework “does stuff”, calls back / messages your app

– Callbacks / Messages
● i.e. OnButtonClicked(ID, stuff...)
● Delete / create / enable / disable widgets dynamically
● Move state back and forth between framework objects 

(widgets) and your app
● Widget ID linkage is central!



Immediate Mode GUIs (IMGUI)
● Application steps

– Update

if(doButton()) //returns true on click
{

//do something
}

//only draw button/do interaction if appValue == true
if(appValue == true && doButton())
{

//do something else
}



Immediate Mode GUIs (IMGUI)
● “Framework” implementation

– Button “widget”

bool doButton(const Rect& aLayout, const char* aText)
{

drawRect(aLayout, BUTTON_COLOR);
drawText(aLayout, aText);

return mouseCursorInside(aLayout) && mouseButtonClicked();
}



Immediate Mode GUIs (IMGUI)
● Application code (i.e. Controller)

– Radio Button “widget”
Rect layout;
int i;

layout.width = 40;
layout.height = 10;
layout.x = 0;
layout.y = 0;

for(i = 0; i < NUM_ITEMS; i++)
{

if(doRadio(myItem == i, layout, ITEM_NAMES[i])
{

myItem = i;
}

layout.x += layout.width;
}



Immediate Mode GUIs (IMGUI)
● “Framework” implementation

– Radio Button “widget”

bool doRadio(const bool anActiveFlag,
const Rect& aLayout,
const char* aText)

{
drawRect(aLayout,

anActiveFlag ? ACTIVE_RADIO_COLOR : INACTIVE_RADIO_COLOR);
drawText(aLayout, aText);

return mouseCursorInside(aLayout) && mouseButtonClicked();
}



Rethink some widgets (IMGUI)
● List controls not needed

– Just loop app items and doRadio() / doButton() / 
doText() for each item

for(i = 0; i < NUM_ITEMS; i++)
{

//selection is visible due to use of radio button “widgets”
if(doRadio(mySelection == i, x, y, ITEM_NAMES[c]))
{

mySelection = i;
}

}



Rethink some widgets (IMGUI)
● Tree controls (application)

– Can be reduced to a TreeNode widget that can be 
expanded and collapsed

– Requires a “handle” from the application
for(c = 0; c < NUM_CATEGORIES; c++)
{

//returns true if node is expanded
//application passes a const void* to identify the node
//across frames (first param, can be anything unique)
//actual expand/collapse state is stored inside the gui
//in a map (const void* <-> bool)
if(doTreeNode(CATEGORY_NAMES[c], x, y, CATEGORY_NAMES[c]))
{

//do gui for expanded node
}

}



Rethink some widgets (IMGUI)
● Tree controls (framework)
bool doTreeNode(const void* aHandle,

const int aX, const int aY,
const WCHAR* aLabel)

{
//hardcoded limit to number of const void* <-> bool mappings
if(myNumHandles < MAX_HANDLES)
{

bool& h(handleState(aHandle));
String s;

s.format(h ? "-%s" : "+%s", aLabel);

if(doRadio(h, aX, aY, s))
h = !h;

return h;
}

return false;
}



Rethink some widgets (IMGUI)
● Combo boxes (application)

– Similar to TreeNode (uses same handle concept)
– Framework handles expand / collapse gui
– Framework can turn off all other widget interaction 

while combo is expanded (to handle overlap)
static const char* COMBO_CHOICES[] =
{

"orange",
"pink",
"red",
"blue",
NULL,

};

doCombo(myChoice, x, y, COMBO_CHOICES);



Rethink some widgets (IMGUI)
● Combo boxes (framework)
void doCombo(unsigned int& aChoice, const int aX, const int aY, const char** someChoices)
{

if(myNumHandles < MAX_HANDLES)
{

bool& h(handleState(&aChoice));
//expanded
if(h)
{

//current choice
if(doButton(aX, aY, someChoices[aChoice]))

h = false; //same choice
//list
unsigned int c(0);
int y(aY);
while(someChoices[c]) //terminate on NULL
{

if(doRadio(c == aChoice, aX, y += buttonHeight(), someChoices[c]))
{

aChoice = c;
h = false;

}
c++;

}
}
//collapsed
else
{

if(doRadio(h, aX, aY, someChoices[aChoice]))
h = true;

}
}

}



Other advanced widgets in IMGUI
● Edit boxes
● Sliders
● Drag-n-drop
● Color pickers
● Multiple windows / focus control

● All of the above are possible!
– Examples: http://www.johno.se/software/IMGUI.zip

http://www.johno.se/software/IMGUI.zip


Implementation tips
● Do key/mouse interaction at time of “widget” 

call
– i.e. Controller::doInput()

● Postpone / cache rendering until time to draw
– i.e. Controller::doOutput()
– This helps when sorting / batching primitives in i.e. 

DirectX
– Also useful when supporting multiple overlapping 

windows / focus control



Implementation tricks
//code from johno's DirectX9 IMGUI
const int Gui::button(const Style& aStyle,

const int aX, const int aY,
const int aWidth, const bool anEdgesFlag,
const WCHAR* aText,
Font& aFont, const int aKey)

{
//add to batches
addRect(aStyle, aX, aY, aWidth, anEdgesFlag);
if(aText)
{

aFont.addText(aX + BUTTON_TEXT_OFFSET, aY - 1, aText, false, 
aStyle.myFont);

}

//sample input state directly
return buttonClicked(aX, aY, aWidth, buttonHeight(), aKey);

}

void Gui::draw(IDirect3DDevice9& aDevice)
{

//draw calls all clear batches after drawing
myRects.draw(aDevice);
myFont.draw(*mySprite);
myBoldFont.draw(*mySprite);
myMouseInsideFlag = false;

}



RMGUI traits
● RMGUIs tend to cache lots of application state 

internally
– Sync requirements lead to lots of tedious code that 

“doesn't do anything valuable”
● Systems become decentralized

– Define gui widgets here...
– Handle callbacks over there...
– Need centralized IDs in yet another place...

● Systems become data-driven
● The capabilities of procedural logic are lost

– Code is more powerful than pure data / code is a su-
perset of data



IMGUI traits
● IMGUIs cache little / no application state
● No sync of data
● Centralized flow control

– Single code path controls all gui
● Code flow controls what is on the screen (procedural), as 

opposed to init-time pre-defined setup (data driven)
● “Widgets” are procedural style function calls

– “Don't call the method, don't have a widget!”
● Enables very dynamic guis
● Dynamic widget creation / destruction / enable / disable is 

not an issue in IMGUI
● Geared towards real-time rendering, i.e. games



Re-evaluate “classic” widgets?
● Because IMGUI is so dynamic, maybe we don't 

need all those classic widgets and windows...

– I personally don't like:
● Overlapping (i.e windows, drop-down menus)

– would rather have “dedicated screen space”
● Free scroll bars

– implications of clipping widgets / viewports
– would rather have “snapped pages”

● Questioning these “standards” is risky due to 
customer expectations

● Games are in a better position to experiment 
than traditional apps



Links
● https://mollyrocket.com/forums/viewforum.php?f=10

● http://sol.gfxile.net/files/Assembly07_IMGUI.pdf

● http://www.johno.se/software/IMGUI.zip

https://mollyrocket.com/forums/viewforum.php?f=10
http://sol.gfxile.net/files/Assembly07_IMGUI.pdf
http://www.johno.se/software/IMGUI.zip
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